INTEGRATED DISPOSAL FACILITY CHAPTER 11.0 CLOSURE

CHANGE CONTROL LOG

Change Control Logs ensure that changes to this unit are performed in a methodical, controlled, coordinated, and transparent manner. Each unit addendum will have its own change control log with a modification history table. The "**Modification Number**" represents Ecology's method for tracking the different versions of the permit. This log will serve as an up to date record of modifications and version history of the unit.

Modification History Table

Modification Date	Modification Number	
09/30/2014		

This page intentionally left blank.

4
1
4
4

5 6

INTEGRATED DISPOSAL FACILITY CHAPTER 11.0 CLOSURE

This page intentionally left blank.

1 2 3 4		CHAPTER 11.0 CLOSURE	
5	TADIE	OF CONTENTS	
7	11.0	Closure	5
8	11.0	Landfill Closure Plan	
_		Closure Performance Standards	
9	11.1.1		
10	11.1.2	Preclosure Activities	
11	11.1.3	Maximum Extent of Operation	
12	11.1.4	Decontaminating Equipment and Structures	
13	11.1.5	Closure of Landfill Units	
14	11.2	Leachate Collection System Closure Plan	
15	11.2.1	Closure Performance Standards.	
16	11.2.2	Leachate Collection System Closure	9
17	11.2.3	Contingent Closure Plan for Leachate Collection System	10
18	11.3	Schedule for Closure	
19	11.4	Extension for Closure.	
20	11.5	Post-closure Plan	10
21			
22	FIGURE	=	
23	Figure 1	1-1 Typical Hanford Site Landfill Cover Design	11
24			
25	TABLE		
26	Table 11	-1 Integrated Disposal Facility Leachate Collection System Closure Activities Schedule	12
27			
28			

This page intentionally left blank.

1 **11.0 CLOSURE**

- 2 This chapter discusses preclosure, closure, and post-closure activities for the Integrated Disposal Facility
- 3 (IDF). This closure plan complies with Washington Administrative Code (WAC) 173-303-610 and
- 4 represents the baseline for closure.
- 5 The IDF has been constructed on 25 hectares of vacant land southwest of the Plutonium Uranium
- 6 Extraction Facility (PUREX) Plant in the 200 East Area (see the topographic map on file at the
- 7 Department of Ecology [Ecology] library [3100 Port of Benton Boulevard, Richland, WA 99354]). The
- 8 landfill is segregated into a Resource Conservation and Recovery Act (RCRA) permitted side and a
- 9 non-RCRA permitted side. The scope of this permit is limited to the western side of the landfill where the
- 10 RCRA waste will be placed and the associated Leachate Collection System (LCS). The waste containers
- and bulk waste that meet the IDF waste acceptance criteria will be inventoried, and disposed in this lined
- landfill. Leachate collected from the lined landfill will be transferred to leachate collection tanksunits
- 13 (LCUs) located in proximity to the landfill for subsequent treatment.
- 14 A more detailed discussion of IDF waste types and the identification of the IDF processes and equipment
- are provided in Chapters 3.0 and 4.0, and attendant appendices. The IDF only will accept and dispose
- waste containers and bulk waste that meet the IDF waste acceptance criteria, RCRA and Land Disposal
- 17 Restriction (LDR).
- 18 The closure process will be the same for partial closure or closure of the entire IDF. The remainder of this
- chapter describes the performance standards that will be met, and the closure/post-closure activities that
- will be conducted.

21 **11.1 Landfill Closure Plan**

- Waste containers and bulk waste that meet the IDF waste acceptance criteria will be disposed in the lined
- 23 landfill that complies with WAC 173-303-665 standards (Chapter 4.0). The IDF will be closed according
- to current applicable WAC 173-303 regulations, United States Department of Energy (DOE)
- 25 requirements, best management practices, and will be integrated with the overall cleanup activities
- 26 performed under the Tri-Party Agreement (Hanford Federal Facility Agreement and Consent Order).
- 27 The disposal landfill cover will be designed and located to comply with WAC 173-303-665(6) and
- 28 WAC 173-303-610. The specification and/or variation for other cover designs will be provided at the time
- of closure once a hazard(s) has been defined.

30 11.211.1.1 Closure Performance Standards

- 31 Closure requirements found in WAC 173-303-665(6), incorporated by reference, and detailed here in
- 32 Chapter 11.0 of the IDF portion of the permit, will make up the closure performance standards for the
- 33 IDF.

34 11.311.1.2 Preclosure Activities

- 35 Preclosure activities could include, at a minimum, placing interim or final covers over the filled portions
- of the landfill as the landfill is expanded to accept more waste. Placement of covers over the filled
- portions might be deferred until closure of all the IDF. Once a decision is made to construct the final
- 38 cover over the landfill, a closure cover design will be used that satisfies the dangerous waste disposal
- requirements defined in WAC 173-303.
- 40 The selection of a final cover design has not been identified. Figure 11-1 shows an example of a typical
- 41 Hanford Site landfill cover design. Design(s) will include features to satisfy the minimum requirements
- 42 found in WAC 173-303-665(6).

1 11.411.1.3 Maximum Extent of Operation

- 2 The maximum process design capacity of the IDF conservatively is calculated to be 100 hectare-meters,
- 3 which is 1,000,000 cubic meters (Chapter 1.0, "Part A Form," Section III). The IDF landfill will be
- 4 segregated into a RCRA permitted side of 50 hectare-meters and a non-RCRA permitted side of
- 5 50 hectare-meters.

6 11.511.1.4 Decontaminating Equipment and Structures

- All ancillary equipment and its secondary containment, and instrumentation (e.g., level-indicating
- 8 devices, leak detection devices, pumps, piping) meet the definition of "debris" as defined in
- 9 WAC 173-303-040. Items in direct contact with mixed waste are assumed to meet the definition of
- 10 "hazardous debris" as defined in WAC 173-303-040.
- 11 Currently, three options are available for treating hazardous debris. The first option is to treat the debris
- 12 using one of the three debris treatment technologies-extraction, destruction, or immobilization-as
- described in 40 Code of Federal Regulations 268.45. If the hazardous debris is treated using approved
- 14 extraction or destruction technologies, the debris is no longer required to be managed as a dangerous
- waste as long as the debris does not exhibit a characteristic of a dangerous waste. If hazardous debris
- 16 contaminated with a listed waste is treated using an immobilization technology, it remains a listed waste,
- even after the LDR treatment standards are met unless Ecology makes a case-by-case determination that
- the debris "no longer contains" a mixed waste. In effect, by making this "contained-in" determination on
- 19 a case-by-case basis, Ecology will be setting clean closure standards in accordance with the closure
- performance standards of WAC 173-303-610(2)(a)(ii).
- 21 The second option is to treat the hazardous debris to meet the constituent-specific LDR treatment standard
- 22 for the waste or waste-specific constituents contaminating the debris; however, such debris, even after
- treatment, may be considered a dangerous waste under the dangerous waste regulations and may require
- 24 management at a facility permitted to manage dangerous waste.
- 25 The third option involves obtaining a "contained-in determination" for the hazardous debris, thereby
- 26 rendering the waste "non-hazardous" for those waste-specific-listed constituents that fall below
- 27 Model Toxics Control Act (MTCA) method B risk-based health limits. Moreover, it must be proven that
- 28 the debris does not designate as a characteristic waste under WAC 173-303.

29 11.5.111.1.4.1 Contaminated Soil

- 30 Contaminated soil could be generated as a result of spill cleanup. Since the majority of IDF operations
- 31 will be performed within secondary containment (see Chapters 4.0 and 6.0) the potential for spilling
- 32 dangerous waste into the surrounding soil is low. Contaminated soil generated as a result of a dangerous
- waste spill will be managed pursuant to WAC 173-303-200.
- 34 Once the soil is designated, appropriate treatment and disposal or storage options will be determined and
- 35 implemented.
- 36 A contained-in determination could also be sought for contaminated soil generated as a result of a spill.
- For contaminated media the contained-in policy requires that a statistically based sampling plan be used
- for obtaining the data to support a contained-in demonstration. The contained-in policy does not require
- 39 that the waste be analytically nondetectable for it to be considered nondangerous. However, the analytical
- 40 results must prove that the listed constituents in the soil are below health-based limits as provided in
- WAC 173-303-610(2)(b)(i) and that the soil does not exhibit any dangerous waste characteristics
- 42 (i.e., soil does not designate for D codes). If approved by Ecology, this could allow waste that falls below
- 43 specific health-based levels to be disposed of without requiring treatment

44 11.611.1.5 Closure of Landfill Units

- 45 Closure of the IDF will be consistent with the closure requirements specified in WAC 173-303-665(6)
- and WAC 173-303-610. The cover design(s) will satisfy the requirements of WAC 173-303-665(6).

1 **11.6.111.1.5.1** Cover Design

- 2 The cover could consist of several layers constructed on top of a native soil base. A generalized
- 3 cross-section of an example cover is shown on Figure 11-1. It is assumed that before construction of the
- 4 final cover, the waste form would be stabilized appropriately.

5 **11.6.1.1**11.1.5.1.1 Grade Layer

- 6 The surface of the landfill would be graded and/or shaped, if necessary, to match the slope of the desired
- 7 low-permeability layer. Additional soil would be placed over the landfill to achieve the required cover
- 8 grade. This grade layer could taper from zero thickness near the edge of the cover boundary to perhaps
- 9 several meters at the center of the cover; the thickness would depend on the lateral dimensions of the
- 10 particular cover and the grade of the cover.

11 **11.6.1.2**11.1.5.1.2 Low-Permeability Layer

- 12 The selection of an appropriate material for this layer would be based on the hazard that is to be isolated.
- 13 The low-permeability layer will be the primary barrier in preventing soil and/or water from migrating into
- the waste zone and meet WAC 173-303-655(6)(v) "Have a permeability less than or equal to the
- permeability of any bottom liner system or natural sub soils present."

16 **11.6.1.3**11.1.5.1.3 **Drainage Layer**

- 17 The drainage layer would conduct any water that percolates through the overlying layers laterally to the
- drainage ditch. Thus, the drainage layer would prevent hydraulic pressure from building up directly on the
- 19 low-permeability liner, and thereby eliminate one set of forces that would drive moisture through the
- 20 primary moisture control barrier.

21 11.6.1.4 Plant, Animal, and Human Intrusion Layer (optional)

- 22 The performance objectives for the permanent isolation surface barrier are summarized as follows:
- Function in a semiarid to sub-humid environment.
- Limit the recharge of water through the waste to near zero amounts [0.05 centimeter per year (1.6x10⁻⁹ centimeters per second)].
- Be maintenance free.
- Minimize the likelihood of plant, animal, and human intrusion.
- Limit the exhalation of noxious gases.
- Minimize erosion-related problems.
- Meet or exceed WAC 173-303-665(6) cover performance requirements.
- Isolate waste for 1,000 years.
- 32 To satisfy the intrusion performance objective, an optional layer would be included in the design of
- 33 barriers that require the additional human and/or biointrusion protection to reduce either the
- 34 environmental or human health risk.

35 **11.6.1.5 11.1.5.1.5 Graded Filter Layer**

- 36 A graded filter consisting of crushed rock overlaid by sand would be placed on the plant, animal, and
- 37 human intrusion layer if incorporated into the design, or directly over the drainage layer. The graded filter
- would serve to separate the surface soil layer from the drainage layer. A geotextile would be placed on the
- 39 top of the graded filter to decrease the potential for fine material to enter the filter and drainage zone. The
- 40 geotextile would be permeable, allowing drainage, and would not support a standing head of water.

1 11.6.1.611.1.5.1.6 Surface Soil Layer

- 2 The two most important factors in engineering the surface soil thickness would be the assignment of the
- 3 water retention characteristics for soil and climate information. Surface soil would be placed over the
- 4 geotextile to intercept, store, recycle water, and prevent damage to the underlying structure from natural
- and synthetic processes. 5

6

11.6.1.711.1.5.1.7 Vegetative Cover

- 7 The vegetative cover would perform three functions. First, the plants would return water stored in the
- 8 surface soil back to the atmosphere, significantly decreasing net infiltration and reducing the amount of
- 9 moisture available to penetrate the cover. Second, the vegetation would stabilize the surface soil
- 10 component of the cover against wind and water erosion. Finally, the vegetative cover would restore the
- 11 appearance of the land to a more natural condition and appearance.
- 12 A mixture of seeds would be used to establish vegetation. The seed types would be selected based on
- 13 resistance to drought, rooting density, and ability to extract water.

14 11.6.211.1.5.2 Wind Erosion

- 15 The principal hazard associated with wind erosion is the thinning of the cover surface soil layer. This in
- 16 turn potentially could lead to breaching of the moisture barriers, gradually allowing larger quantities of
- 17 water to reach the waste. The engineering approaches to mitigating wind erosion of the cover would be
- 18 (1) designing the surface soil layer with an appropriate total thickness to compensate for future soil loss
- 19 that might result from wind erosion, (2) establishing a vegetative cover on the surface to reduce wind
- 20 erosion, and (3) including an appropriate coarse material (admix) in the upper layer of the surface soil to
- 21 form an armor layer.

22 11.6.311.1.5.3 Water Erosion

- 23 The potential hazard associated with water erosion is the same as that for wind erosion, namely the loss of
- 24 soil from the top or surface layer.
- 25 Several of the following engineering approaches could be adopted to minimize the potential for water
- 26 erosion:

28

31 32

33

34

35

38

- 27 • Limiting the surface slopes.
 - Providing run-on control with the sideslope drainage ditches.
- 29 Compacting the surface soil in a way that promotes significant infiltration rather than excessive runoff. 30
 - Properly designing the sideslopes to prevent gullying.
 - Establishing a vegetative cover to slow surface runoff.
 - Incorporating coarse material (pea gravel admix) in the upper portion of the surface soil layer to help form an erosion-resistant armor.
 - Limiting flow path lengths through the use of vegetation and admix.
- 36 The cover design would be evaluated for potential erosion damage from overall soil erodibility, sheet
- 37 flow, and gullying.

11.6.411.1.5.4 Deep-Rooted Plants

- The following design features could minimize the potential for problems with deep-rooted plants. 39
- 40 The surface soil (top two layers) would retain most of the precipitation, because the underlying 41
- drainage layer would have significantly higher permeability and much less water retention
- 42 capacity. Therefore, it is expected that vegetation preferentially would occupy the surface soil
- 43 layer and not have an affinity for growing into the drier underlying layers.

 The thickness of the surface soils would be sized to promote the development of semiarid deep-rooted perennial grasses and to discourage the development of deep-rooting intrusive species.

11.2 Leachate Collection System Closure Plan

- 5 The LCS dangerous waste management units (DWMUs) consist of two miscellaneous LCUs and ancillary
- 6 equipment. Ancillary equipment within the Crest Pad and Leachate Transfer Buildings includes LCS
- 7 process instrumentation and controls, leachate transfer piping, valves, flow meters, filters, and building
- 8 leak detection sumps. Other ancillary equipment includes leak detection sumps and leachate transfer
- 9 piping connected to the disposal cells, buildings, and miscellaneous units.
- Each LCU is approximately 30.9 m (101.5 ft) in diameter and 2.5 m (8.2 ft) high, with a working capacity
- of 1,420,000 liters (375,000 gal) per unit. Each Crest Pad Building is 6.4 m (21 ft) by 4.9 m (16 ft) by
- 12 3.2 m (10.5 ft) high. Each Leachate Transfer Building is 3.7 m (12 ft) by 3.7 m (12 ft) by 2.4 m (8 ft)
- 13 <u>high. Each combined sump facilitates leachate transfer as well as leak detection. Leachate transfer piping</u>
- 14 outside buildings is double-walled with leak detection. Each Crest Pad Building and Leachate Transfer
- Building contains single-walled piping with a leak detection sump in the floor. Further description of LCS
- 16 DWMUs is provided in Chapter 4.0.
- 17 Leachate from Disposal Cells 1 and 2 is conveyed automatically from the Leachate Collection and
- 18 Removal System and Leak Detection System sumps through the Crest Pad Building and routed to the
- 19 storage units through the Leachate Transfer Building. Leachate is then manually pumped from the
- 20 leachate storage units through the Leachate Transfer Building to the Truck Loading Station and into
- 21 <u>tankers for transport to an approved disposal facility.</u>

22 <u>11.2.1 Closure Performance Standards</u>

- The IDF DWMUs will be closed in a manner that meets the performance standards of
- WAC 173-303-610(2). In addition, each DWMUs will be closed in accordance with the requirements
- outlined in their respective codes under Washington State regulations. The LCS DWMUs have been
- 26 classified as a miscellaneous unit due to the unique characteristics of the structures, and will be closed in
- 27 accordance with WAC 173-303-680, Miscellaneous units. Structures within the LCS DWMU will be
- 28 closed according to the most closely related regulations, which includes WAC 173-303-650,
- 29 Surface impoundments, for the liner of the units, and WAC 173-303-640, Tank systems, for the remainder
- of the LCS.

1

2

3

4

31 11.2.2 Leachate Collection System Closure

- 32 The LCS will be clean closed in accordance with the closure performance standards in this plan.
- 33 Activities to clean close the LCS include removal of waste, LCUs, ancillary equipment, above ground
- structures, and surrounding soil as needed. Visual inspections and soil verification sampling will be
- performed to demonstrate the DWMUs meet clean closure criteria.
- Waste generated due to closure activities may include:
- Debris from LCU DWMUs, buildings, and ancillary equipment.
- Media (soil) from beneath the DWMUs.
- Miscellaneous disposables (personal protective equipment, disposable sampling equipment, etc.).

40 **11.2.2.1 Removal of Wastes**

- 41 Any liquids remaining in the LCS will be drained and transferred to the Truck Loading Station. Liquid
- 42 wastes will be transported via tanker truck to a RCRA-permitted disposal facility. All waste will be
- removed to ensure the units and pipelines are empty prior to removal.

1 11.2.2.2 Visual Inspection of Dangerous Waste Management Unit Prior to Removal

- 2 Following removal of wastes from the LCS DWMUs, the concrete foundation for each building will be
- 3 <u>visually inspected for contamination (e.g., stains or residuals), cracks or other openings that reach the</u>
- 4 underlying soil. The LCU liners will also be visually inspected for evidence of holes or leaks to the
- 5 underlying soil. The findings from the inspection will be documented in the facility operating record so it
- 6 can be used to determine whether additional focused sampling is required.
- Any previous spills at the LCS DWMUs, and subsequent cleanup, will be identified and documented in
- 8 the IDF portion of the facility operating record and reviewed at the time of closure.

9 11.2.2.3 Leachate Collection System Removal, Inspection, and Soil Sampling

- 10 The LCS DWMUs will be removed to support clean closure. Soil surrounding and below the pads and
- liners will be excavated as well. Upon removal of the concrete foundations, building structures, sumps,
- 12 ancillary piping and underlying soil, the surface will be inspected. Any visual appearance of waste
- staining or leaks will be documented in the facility operating record so it can be used to determine
- whether additional focused sampling is required.
- 15 Verification sampling of the soil beneath the DWMUs will be performed to demonstrate there were no
- releases from the units or ancillary equipment. The sampling design is presented in Appendix 11A,
- 17 "Visual Sampling Plan Report Documentation."

18 11.2.3 Contingent Closure Plan for Leachate Collection System

- 19 If clean closure is achieved throughout the LCS DWMUs, a contingent closure plan is not required. In the
- 20 unlikely event the soil beneath the LCS cannot meet clean closure performance standards, the Permittees
- will meet with Ecology to discuss closure. Any modifications needed to the closure plan will be submitted
- as a permit modification request in accordance with WAC 173-303-830, *Permit changes*.

23 **11.711.3** Schedule for Closure

- As stated previously, closure of the IDF <u>landfill</u> will be a complex process. At the time of closure, this
- closure plan will be updated to reflect the current closure plan schedule per WAC 173-303-830,
- Appendix I. In addition, when a closure date is established, a revised closure plan and closure schedule
- 27 will be submitted to Ecology that contains detailed information regarding specific activities and
- 28 implementation timeframes.
- 29 Closure activities for the LCS DWMUs, as well as the expected duration for each activity, are identified
- 30 in Table 11-1.

31 **11.811.4** Extension for Closure

- 32 An extension for closure request is anticipated to complete the closure/post-closure process of the IDF.
- 33 **11.911.5** Post-closure Plan
- 34 Because of the long active life of the IDF, a comprehensive post-closure plan will be developed when
- 35 closure becomes imminent or when 200 Areas cleanup activities prescribed by the Tri-Party Agreement
- 36 require integration.

Notes:

- Drawing not to scale. Cover shown for unlined trench. Similar configuration for lined trench.

To convert feet (ft) to meters, multiply by 0.3048.

H00040105.2 M0105-2.1 5/31/01

Figure 11-1 Typical Hanford Site Landfill Cover Design

1

<u>Table 11-1 Integrated Disposal Facility Leachate Collection System</u>
<u>Closure Activities Schedule</u>

Closure Activity Description		Expected		
Primary Activity	Description of Activity	<u>Duration</u>		
Pre-Closure				
Submit Intent to Close DWMUs	Submit to Ecology the notification of intent to close the individual DWMUs. DWMU closure should begin no later than 30 days after receipt of last known volume of waste [WAC 173-303-610(3)(c)].	60 days prior to closure		
LCS DWMUs Closure				
Remove LCS DWMUs	Excavate LCS DWMUs and up to 0.9 m (3 ft) soil around and beneath the footprint. Perform visual inspection and verification sampling and analysis.	8 Weeks (Week 0-8)		
Conduct LCS Clean Closure Verification	Obtain verification of clean closure for LCS DWMUs.	8 Weeks (Week 8-17)		
Prepare and Submit LCS Closure Certification	IQRPE will prepare closure certification that the LCS DWMUs were closed in accordance with the approved closure plan. The owner/operator will submit certification to Ecology within 60 days of completion of closure [WAC 173-303-610(6)].	8 Weeks (Week 17-25)		

<u>IDF</u> = <u>Integrated Disposal Facility</u>